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Abstract. We present a high precision Monte Carlo study of various universal amplitude ratios
of the three-dimensional Ising spin model. Using state of the art simulation techniques we
study the model close to criticality in both phases. Great care is taken to control systematic
errors due to finite size effects and correction to scaling terms. We obtainC+/C− = 4.75(3),
f+,2nd/f−,2nd = 1.95(2) andu∗ = 14.3(1). Our results are compatible with those obtained by
field theoretic methods applied to theφ4 theory and high- and low-temperature series expansions
of the Ising model. The mismatch with a previous Monte Carlo study by Rugeet al remains to
be understood.

1. Introduction

In the neighbourhood of a second-order phase transition various quantities display a singular
behaviour. In this limit most of the microscopic features which characterize a given model
become irrelevant and models which differ at the microscopic level may share the same
singular behaviour. This is the basis of the concept of universality. The first, well known,
consequence of universality is that different models belonging to the same universality class
share the same critical indices. However, the hypothesis of universality of the various
scaling functions has much stronger implications and it is possible to show that models
belonging to the same universality class are also characterized by the same values of some
critical-point amplitude combinations [1]. Let us see a simple example. Near the critical
point the correlation lengthξ diverges as

ξ ∼ f+t−ν t > 0

ξ ∼ f−(−t)−ν t < 0
(1)

with

t = T − Tc
Tc

(2)

where T is the temperature andTc is the critical temperature. Different models in the
same universality class share not only the same critical exponentν, but also the same
dimensionless combination of critical amplitudesf+/f−. This is particularly relevant from
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the experimental point of view, since in general critical amplitudes are more easily detectable
than critical indices and allow a simpler identification of the universality class. In fact the
variations of the critical indices between different universality classes are in general rather
small, while the amplitude ratios may vary by large amounts. In this paper we shall be, in
particular, interested in the universality class of the three-dimensional Ising model which
has several interesting experimental realizations, ranging from the binary mixtures to the
liquid vapor transitions.

The two standard approaches to the evaluation of these amplitudes ratios in the Ising case
are the use of field theoretic methods applied to theφ4 theory [2–8], and the extrapolation
to criticality of low- and high-temperature series expansions on various lattices [9]. All
these estimates are in general in rather good agreement among them (for a comparison and
a discussion see section 5).

In order to obtain results from Monte Carlo simulations relevant for the scaling limit
we have to control both finite size effects as well as corrections to scaling. This means
that the linear lattice sizesL have to be chosen such thatL � ξ while ξ → ∞ as
β → βc. In practice one has to carefully check which factor ofL/ξ is required to obtain
results sufficiently close to the thermodynamic limit. While in the high-temperature phase
L/ξ ≈ 7 turns out to be sufficient to give thermodynamic limit results within numerical
accuracy, in the low-temperature phase this factor has to be doubled at least. The value
of ξ that can be reached, and hence the control of corrections to scaling, is limited by the
CPU time available for the study. In the present paper the largest correlation length is
ξ = 11.884(9) in the high-temperature phase andξ = 6.208(18) in the low-temperature
phase.

One should also note that simulations in the low-temperature phase are considerably
more difficult than those in the high-temperature phase of the model. In the low-temperature
phase conceptual as well as practical problems caused by spontaneous symmetry breaking
arise. Furthermore, the determination of the correlation length is complicated by the
occurrence of secondary correlation lengths which are close to the leading one.

Due to all these reasons it is only recently that there have been some attempts to measure
these ratios in Monte Carlo simulations [11]. However, the results are rather puzzling. For
instance, in the case of the ratiof+/f− discussed above, the Monte Carlo estimate, which
is f+/f− = 2.06(1) [11], disagrees with the one obtained with strong/weak coupling series
f+/f− = 1.96(1) [9], while the field theoretical estimatef+/f− = 2.013(28) [8] lies in
between the two.

The aim of our work is to show that Monte Carlo estimates of the amplitude ratios can
indeed be competitive with other approaches. To this end we have elaborated a technique
to directly extract the various amplitude ratios, without evaluating the single amplitudes
thus avoiding all the uncertainties related to the critical indices. We shall discuss this
point in section 5 below. Besides this, we have devoted great care throughout the paper
to keep systematic errors due to finite size effects and corrections to scaling under control.
Finally we have used state of art simulation techniques to obtain high precision estimates
of the observables near the critical point, in both phases. The simulations in the high-
temperature phase have been performed using Wolff’s single cluster algorithm. Here the
improved estimators give a great boost to the accuracy of the results. However, in the low-
temperature phase, due to the finite magnetization, the improved estimators of the cluster
algorithm are of little help. Hence, we simulate here with a multispin coding implemented
Metropolis-like algorithm.

As we shall see, our results are comparable in precision and agree with the most recent
field-theoretic and strong/weak coupling estimates, while they are incompatible with the
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MC results of Rugeet al [11]. A more detailed comparison of the data might be helpful to
understand this discrepancy.

This paper is organized as follows. In section 2 we collect some information on the
three-dimensional Ising model and on the observables that we study. In section 3 we discuss
the details of the simulation, while in section 4 we analyse the scaling behaviour of the
measured quantities: magnetization, susceptibility and correlation lengths. In section 5
we study the amplitude ratios and compare our results with other existing estimates and
experiments. Finally, section 6 is devoted to some concluding remarks.

2. General setting

2.1. The model

We study the Ising spin model in three dimensions on a simple cubic lattice. The action is
given by

Sspin= −β
∑
〈n,m〉

snsm (3)

where the field variablesn takes the values−1 and+1; n ≡ (n0, n1, n2) labels the sites of
the lattice and the notation〈n,m〉 indicates that the sum is taken on nearest-neighbour sites
only. The couplingβ is defined asβ ≡ 1

kT
, hence the reduced temperaturet can be written

as

t = βc − β
β

(4)

whereβc ≡ 1
kTc

. In the following we shall considern1 and n2 as ‘space’ directions and
n0 as the ‘time’ direction and shall sometimes denote the time coordinaten0 with τ . We
always consider lattices of equal extensionL and periodic boundary conditions in all three
directions.

2.2. The observables

2.2.1. Magnetization. The magnetization of a given configuration is defined as:

m = 1

V

∑
i

si (5)

whereV ≡ L3 is the volume of the lattice. However, in a finite volume theZ2 symmetry
of the model cannot be broken for any nonzero temperature. Hence, the expectation value
of m vanishes.

In order to obtain the magnetization of the model in the low-temperature phase one
should add a magnetic fieldh in order to break the symmetry. Then one should first take
the thermodynamic limit at finite magnetic field and then take the limit of the vanishing
magnetic field. However, it is difficult to follow this route in a numerical study.

As an alternative Binder and Rauch [12] suggested simulating the finite lattices at
vanishing external field and studing the quantity

〈m〉 ≡ lim
L→∞

√
〈m2〉. (6)

However, it turns out that this is not the best choice. In fact this observable is affected
by strong finite size effects [13] which would require very large lattices to obtain reliable
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estimates of the infinite volume magnetization. It has recently been observed [14] that a
much more stable observable is:

〈m〉 ≡ lim
L→∞
〈|m|〉. (7)

The finite size behaviour of this observable, was carefully studied in [14] where it was
shown that the asymptotic, infinite volume, value is reached for lattices of sizeL >∼ 8ξ ,
whereξ denotes the correlation length. In our simulations we always use lattice sizes much
larger than this threshold.

Close to the critical temperature, the magnetization is supposed to scale as

〈m〉 ∼ B(−t)β t < 0 (8)

where the critical exponentβ should not be confused with the inverse temperature.

2.2.2. Magnetic susceptibility.The susceptibility gives the response of the magnetization
to an external magnetic field

χ = ∂〈m〉
∂H

. (9)

One easily derives that the magnetic susceptibility can be expressed in terms of moments
of the magnetization as follows

χ = V (〈m2〉 − 〈m2〉). (10)

Close to the critical temperature the magnetic susceptibility is supposed to scale as

χ ∼ C+t−γ t > 0

χ ∼ C−(−t)−γ t < 0.
(11)

2.2.3. Exponential correlation length.We consider the decay of so-called time-slice
correlation functions. The magnetization of a time slice is given by

Sn0 =
1

L2

∑
n1,n2

s(n0,n1,n2). (12)

Let us define the correlation function

G(τ) =
∑
n0

{〈Sn0Sn0+τ 〉 − 〈Sn0〉2}. (13)

The large distance behaviour ofG(τ) is given by

G(τ) ∝ exp(−τ/ξ) (14)

whereξ is the exponential correlation length.
Close to criticality the behaviour of the correlation length is governed by the scaling

laws

ξ ∼ f+t−ν t > 0

ξ ∼ f−(−t)−ν t < 0.
(15)
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2.2.4. Second moment correlation length.The square of the second moment correlation
length is defined for a generic value of the spacetime dimensionsd by

ξ2
2nd=

µ2

2dµ0
(16)

where

µ0 = lim
L→∞

1

V

∑
m,n

〈smsn〉c (17)

and

µ2 = lim
L→∞

1

V

∑
m,n

(m− n)2〈smsn〉c. (18)

The connected part of the correlation function is given by

〈smsn〉c = 〈smsn〉 − 〈sm〉2. (19)

This estimator for the correlation length is very popular since its numerical evaluation
(say in Monte Carlo simulations) is simpler than that of the exponential correlation length.
Moreover, it is the length scale which is directly observed in scattering experiments.
However, it is important to stress that it is not exactly equivalent to the exponential
correlation length. The relation between the two can be obtained as follows. Let us write

µ2 = 1

V

∑
m;n
(n−m)2〈smsn〉c

= 1

V

∑
n;m

d−1∑
µ=0

(nµ −mµ)2〈smsn〉c

= d

V

∑
n;m
(n0−m0)

2〈smsn〉c. (20)

Due to the exponential decay of the correlation function this sum is certainly convergent
and we can commute the spatial summation with the summation over configurations so as
to obtain

µ2 = d
∞∑

τ=−∞
τ 2〈S0Sτ 〉c (21)

with Sn0 given by equation (12). Analogously one obtains

µ0 =
∞∑

τ=−∞
〈S0Sτ 〉c. (22)

If we now insert these results into equation (16), assume a multiple exponential decay

〈S0Sτ 〉c ∝
∑
i

ci exp(−|τ |/ξi) (23)

and replace the summation by an integration overτ we obtain

ξ2
2nd=

1

2

∫∞
τ=0 dττ 2 exp(−τ/ξ)∫∞
τ=0 dτ exp(−τ/ξ) =

∑
i ciξ

3
i∑

i ciξi
(24)

which is equal toξ2 if only one state contributes. An interesting consequence of this analysis
is that the difference from one of the ratioξ/ξ2nd gives an idea of the density of the lowest
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Table 1. Results forβc and for the critical indices given in literature.

Ref. Method βc γ ν β θ

[15] FT 1.241(4) 0.630(2) 0.324(6) 0.496(3)
[16] ε-expansion 1.2390(25) 0.6310(15) 0.3270(15) 0.51(3)
[17] d = 3 1.2405(15) 0.6300(15) 0.3250(15) 0.50(2)
[18] MCRG 0.221 652(3) 0.624(1) 0.50-0.53
[19] MCRG 0.221 655(1)(1) 0.625(1) 0.44
[20] MC, FS 0.221 6546(10) 1.237(2) 0.6301(8) 0.3267(10) 0.52(4)
[21] MC 0.221 6576(22) 1.239(7) 0.6289(8) 0.3258(44)
[14] MC 0.221 6544(3) 0.3269(6) 0.508(25)
[22] HT 1.237(2) 0.6300(15) 0.52(3)
[23] HT 1.239(3) 0.632(3) 0.52(3)
[24] HT 1.2385(25) 0.6305(15) 0.57(7)
[25] HT 1.2395(4) 0.632(1) 0.54(5)
[26] d = 2+ 1, FS 1.236(8) 0.627(4) 0.332(6)
[27] d = 2+ 1, FS 0.629(2) 0.324(9)
[28] d = 2+ 1, HT 1.241(3) 0.636(4)
[29] d = 2+ 1, LT 1.255(10) 0.640(10) 0.320(3)
[30] d = 2+ 1, FS 1.23(1) 0.627(2) 0.324(3)

states of the spectrum. If these are well separated the ratio will be almost 1, while a ratio
significantly higher than 1 would indicate a denser distribution of states.

The critical behaviour ofξ2nd is governed by the same critical indexν, so near the
critical point we expect:

ξ2nd∼ f+,2ndt
−ν t > 0

ξ2nd∼ f−,2nd(−t)−ν t < 0.
(25)

2.3. Critical indices

Our aim is to obtain high precision estimates for some amplitude ratios. To this end we
need to use as input information the critical temperatureβc and the values of the critical
indices† defined above. In table 1 we list some estimates for these quantities, obtained with
field theoretical methods, strong coupling series and Monte Carlo simulations. The last five
values (denoted by ‘d = 2+ 1’) refer to results obtained in the framework of the quantum
Hamiltonian formulation of the Ising model.

In general these values are in rather good agreement among themselves, despite the fact
that they were obtained with very different methods. As input parameters for our analysis
we have decided to choose the following values:

βc = 0.221 6544(3) γ = 1.2390(15) ν = 0.6310(15) (26)

β = 0.3270(6) θ = 0.51(3) (27)

which were obtained by combining the results of [14] and [16] and satisfying the scaling
relations. Let us stress, however, that our results are only slightly affected by this choice‡.

† As a matter of fact, for the actual determination of the amplitude ratios we only need to knowβc and the
correction to scaling exponentθ . The values of the other critical indices will only be use to compare our results
with those obtained with the series expansions. For a discussion of the role ofθ in our analysis, see section 5.
‡ The systematic errors due to the uncertainties in the choice ofβc and θ turn out to be much smaller than the
statistical fluctuations of our estimates. In any case, both are taken into account in the errors that we quote in our
final results.
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2.4. Amplitude ratios

In the following we shall be interested in these scaling functions:

0χ(t) ≡ χ(t)

χ(−t) 0ξ (t) ≡ ξ2nd(t)

ξ2nd(−t) (t > 0) (28)

u(t) ≡ 3χ(t)

ξ3
2nd(t)m

2(t)
(t < 0) (29)

0c(t) ≡ χ(t)

ξ3
2nd(t)m

2(−t) (t > 0) (30)

(note the factor of 3 difference between the definitions of0c and u). While 0χ, 0ξ and
0c mix low- and high-temperature observables,u only contains quantities evaluated in the
broken symmetry phase.0c andu are scale invariant thanks to the following scaling (and
hyperscaling) relations among the critical exponents:

α + 2β + γ = 2 dν = 2− α. (31)

In particular,u plays the important role of a low-temperature renormalized coupling constant
in the study of theφ4 theory directly ind = 3.

It is important to note that0c is related to the ratio of two amplitude combinations (in
which A(t) denotes the specific heat):

Rc ≡ χ(t)A(t)

m2(−t) Rξ ≡ ξ2nd(t)A(t)
1/3 (t > 0) (32)

which have been widely studied in literature since they can be evaluated rather easily in
experiments. The relation is:0c = Rc/R3

ξ . In the scaling limit these functions are related
to the amplitudes defined in equations (8), (11), (15) and (25) as follows:

lim
t→0

0χ(t) = C+
C−

lim
t→0

0ξ (t) = f+,2nd

f−,2nd
(33)

lim
t→0

u(t) ≡ u∗ = 3C−
f 3
−,2ndB

2
lim
t→0

0c(t) = C+
f 3
+,2ndB

2
. (34)

Finally we shall also be interested in evaluating the ratio:

ξ

ξ2nd
(35)

both above and below the critical point.

2.5. Series expansions

A very powerful approach to the study of the three-dimensional Ising model is represented
by the series expansions which lead to estimates for several quantities near the critical point
which are competitive with the most precise Monte Carlo simulations. In the following
we shall compare our results in the low-temperature phase (which is the one in which
simulations are more difficult and results are in general affected by stronger finite size
effects) with those obtained with series expansions with the twofold aim of testing the
reliability of our simulations and comparing the precision of the two methods. The low-
temperature regime is also particularly interesting because recently these series have been
extended up to very high orders [31–33]. Some information on these series can be found
in table 13. In order to extract from the series the estimates for the observables in which
we are interested and to quantify the uncertainty of such estimates we use the so-called
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‘double biased inhomogeneous differential approximants’ (IDA). The technique of IDA is
described in [9, 34], to which we refer for notations and further details. Following [9] we
use the notation [K/L;M] for the approximants. In order to keep the fluctuations of the
results under control, we have chosen to use double biased IDA [9], namely we fix both the
critical couplingβc and the critical index describing the critical behaviour of the observable.
As K and L vary we obtain several different IDAs and correspondingly several different
estimates of the observable. As we approach the critical point these estimates start to spread
out, indicating that we are pushing the series towards its convergence threshold. The final
problem is then to extract from this set of values the best estimate and its uncertainty.
Our choice in this respect is to neglect those IDAs which fluctuate too wildly and treat
the remaining approximants on the same ground. To this end we determine the smallest
interval that contains half of the results. The values that we shall quote in the tables below
as our best estimates correspond to the centre of this interval, the first number in brackets
gives half the size of the interval. The second number in brackets gives the error induced
by the error ofβc = 0.221 6544(3) and of the critical index used for biasing. Together they
give an idea of the uncertainty of the estimate. As we shall see, in the range of coupling in
which we are interested, the uncertainty will always be dominated by the spread of IDAs.

3. The simulations

3.1. Simulations in the low-temperature phase

We simulated the Ising spin model in its low-temperature phase atβ = 0.2391, 0.231 42,
0.2275, 0.2260, 0.2240 and 0.223 11 using a demon algorithm implemented in the multispin
coding technique. A detailed discussion of this algorithm is given in [35]. The update of a
single spin takes 46×10−9 s on a HP 735 and 21×10−9 s on a DEC Alpha 250 workstation
for L = 120. Forβ = 0.223 11 the integrated autocorrelation time of the magnetization
wasτint = 81.(2.) in units of sweeps.

We used cubical lattices with periodic boundary conditions and a linear extension of
about 20ξ . It should be noted that test runs revealed that in contrast to the high-temperature
phase, a linear lattice size of 6ξ is clearly not sufficient to obtain results close to the
thermodynamic limit. Some information on the simulations is presented in table 2.

We computed〈S0Sτ 〉 for all values ofτ available on the finite lattice. We evaluated
S0 andSτ for all three lattice directions and all possible translations. The connected part
was then obtained by subtracting the expectation value of the square of the magnetization
〈(1/V ∑n sn)

2〉.
In order to obtain an estimate for the true correlation length we started from the ansatz

G(τ) ∝ exp(−τ/ξ)+ exp(−(L− τ)/ξ) (36)

Table 2. Statistics of the runs in the low-temperature phase.

β L Measures Sweeps/measure Bits

0.239 1 30 40 000 25 64
0.231 42 40 50 000 25 64
0.227 5 50 50 000 25 64
0.226 0 80 50 000 25 64
0.224 0 100 92 000 25 32
0.223 11 120 124 000 25 32
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Table 3. Results in the low-temperature phase.

β L m E ξexp ξ2nd χ

0.239 1 30 0.667 162(20) 0.553 732(17) 1.2851(28) 1.2335(15) 4.178(3)
0.231 42 40 0.570 306(16) 0.478 046(12) 1.8637(45) 1.8045(21) 9.394(4)
0.227 5 50 0.491 676(14) 0.430 364(10) 2.578(7) 2.5114(31) 18.706(10)
0.226 0 80 0.449 984(16) 0.409 609(4) 3.103(7) 3.0340(32) 27.596(11)
0.224 0 100 0.372 490(10) 0.378 612(3) 4.606(13) 4.509(6) 61.348(34)
0.223 11 120 0.320 830(10) 0.362 946(2) 6.208(18) 6.093(9) 112.60(7)

where the last term takes into account the periodicity of the lattice. An effective correlation
lengthξeff(τ ) is then computed by solving the equation above forτ andτ +1. Ignoring the
term exp(−(L− τ)/ξ), ξeff(τ ) takes the form

ξeff(τ ) = 1

ln(G(τ + 1))− ln(G(τ))
. (37)

For τ > 3ξ , ξeff(τ ) seems to stabilize within error bars. In table 3 the results forτ = 3ξ are
given. However, it is important to stress that there might still be systematic errors due to
higher excitations that are of the same magnitude as the statistical error ofξeff. Therefore a
multi-exponential ansatz might be useful. We shall discuss this point further in section 4.4.

We compute the second moment of the correlation function by

µ2 =
τmax∑
τ=1

τ 2G′(τ )+
∞∑

τ=τmax+1

τ 2G′(τmax) exp(−(τ − τmax)/ξeff(τmax)) (38)

whereG′(τ ) = Ceff(τ ) exp(−τ/ξeff(τ )). Where againCeff(τ ) andξeff(τ ) are obtained from

G(τ) ∝ exp(−τ/ξ)+ exp(−(L− τ)/ξ) (39)

insertingτ andτ + 1. As for the exponential correlation length we useτmax= 3ξ to obtain
the data reported in table 3. Note that the systematic error introduced by the finiteτmax only
affects the second term of equation (38), which is small compared with the first one. Hence,
these systematic error can be safely ignored for our choice ofτmax. The susceptibility is
computed analogously. The results are summarized in table 3.

3.2. Simulations in the high-temperature phase

We simulated the Ising spin model in the high-temperature phase using the single cluster
algorithm [36]. The time-slice correlation function was determined using the cluster
improved estimator. Finite size effects are less important in this phase and preliminary
tests showed that lattice sizes greater than 6ξ were enough to keep them under control.
This is clearly visible in the data of table 4 where we report a test atβ = 0.219 31.

Also the determination of the correlation length in the high-temperature phase turns
out to be much easier than in the low-temperature phase. The effective correlation length
approaches a plateau quite quickly and the true correlation length is well approximated
by ξeff at a self-consistently chosen distanceτ ≈ ξeff. This behaviour ofξeff also implies
that the difference between the second moment correlation length and the true correlation
length is much smaller than in the low-temperature phase. We have chosen theβ values
in the high-temperature phase such thatβc − β = βlow − βc, whereβlow are the inverse
temperature used in the simulations of low-temperature phase. The reason for this choice
will be made clear in the following section. The uncertainty ofβc virtually does not affect
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Table 4. Test for finite size corrections atβ = 0.219 31.

β L Stat ξexp ξ2nd E χ

0.219 31 40 50 000× 1000 8.701(4) 8.691(5) 0.313 986(24) 303.23(30)
0.219 31 50 50 000× 1000 8.747(4) 8.741(5) 0.313 870(18) 307.14(31)
0.219 31 60 50 000× 1000 8.754(6) 8.750(5) 0.313 811(15) 307.79(31)
0.219 31 70 50 000× 1000 8.758(4) 8.751(5) 0.313 823(14) 307.95(31)
0.219 31 80 50 000× 1000 8.766(5) 8.760(5) 0.313 849(14) 308.58(31)

Table 5. Results in the high-temperature phase.

β L Stat ξexp ξ2nd E χ

0.204 21 20 50 000× 500 2.363(1) 2.346(1) 0.262 928(49) 25.255(16)
0.211 89 30 50 000× 500 3.477(2) 3.465(2) 0.284 663(35) 52.09(4)
0.215 81 40 50 000× 500 4.864(3) 4.854(3) 0.298 366(28) 98.90(10)
0.217 31 50 50 000× 800 5.892(3) 5.885(3) 0.304 493(20) 143.04(12)
0.219 31 80 50 000× 1000 8.766(5) 8.760(5) 0.313 849(14) 308.58(31)
0.220 20 100 50 000× 1200 11.884(9) 11.877(7) 0.318 742(11) 557.57(61)

the following analysis. The simulation results are summarized in table 5. Recently [37],
Monte Carlo results for the second moment correlation length and the magnetic susceptibility
were reported. Interpolation of their results, using the scaling ansatz, to ourβ-values leads
to results consistent with ours. One has to note however, that our statistical errors are at
least 3 times smaller than those of [37] in the commonβ-range.

4. Analysis of the results

4.1. Magnetization

A very precise Monte Carlo study of the behaviour of the magnetization in the Ising model
can be found in [14]. In particular, in [14] it was shown that the magnetization values
obtained from the Monte Carlo simulations were well described by the following empirical
approximation:

m(β) = t0.326 941 09(1.691 904 5− 0.343 577 31t0.508 420 26− 0.425 723 66t) (40)

with t given by equation (4). Since our values ofβ are inside the region of validity of this
approximation, it is interesting to also compare our magnetization values with equation (40).
Note as a side remark, that our estimates for the magnetization are in general more precise
than those reported in [14] (where, however, a much larger number ofβ values was studied).
This comparison is reported in table 6, together with the estimates obtained with a double
biased IDA analysis of the series published in [33].

It is interesting to note that our values are always in perfect agreement with those
obtained from the series expansions, and that our results become more precise than the
strong coupling ones starting fromξ ∼ 2.

The agreement with the data of [14] is also very good. Even if our values are
systematically slightly higher than those of equation (40), they are well inside the error
bars reported in table 1 of [14].
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Table 6. Comparison of our Monte Carlo results for the magnetization with equation (40) and
with double biased IDAs.

β Our MC Equation (10) of [14] Biased IDA

0.239 1 0.667 16(2) 0.667 143 0.667 151(3)(1)
0.231 42 0.570 306(16) 0.570 279 0.570 300(16)(1)
0.227 5 0.491 676(14) 0.491 645 0.491 67(4)(1)
0.226 0 0.449 984(16) 0.449 953 0.449 99(7)(1)
0.224 0 0.372 490(10) 0.372 471 0.372 53(15)(2)
0.223 11 0.320 830(10) 0.320 809 0.320 9(2)(1)

Table 7. Comparison of our Monte Carlo results for the susceptibility with double biased IDAs.

β Our MC Biased IDA

0.239 1 4.178(3) 4.1801(16)
0.231 42 9.394(4) 9.401(20)
0.227 5 18.706(10) 18.76(15)
0.226 0 27.596(11) 27.67(40)
0.224 0 61.348(34) 61.8(2.7)
0.223 11 112.60(7) 114.6(10.5)

Table 8. Comparison of our Monte Carlo results for the second moment correlation length with
double biased IDAs.

β Our MC MC of [38] Biased IDA

0.239 1 1.2335(15) 1.2358(16)
0.231 42 1.8045(21) 1.803(5)
0.227 5 2.5114(31) 2.509(11)
0.226 0 3.0340(32) 3.22(1) 3.034(16)
0.224 0 4.509(6) 4.61(6) 4.493(30)
0.223 11 6.093(9) 6.084(46)

4.2. Susceptibility

In table 7 we report the comparison of our data on the susceptibility in the low-temperature
phase with a double biased IDA analysis of the series published in [33]. The agreement
is again very good and as in the previous case our results become more precise than the
strong coupling ones starting fromξ ∼ 2.

4.3. Second moment correlation length

In table 8 we report the comparison of our data on the susceptibility in the low-temperature
phase with a double biased IDA analysis of the series published in [31]. Also in this case
the agreement is very good. In addition, we give Monte Carlo results of [38] for which the
β-value matches ours. One has to note that the results of [38] were obtained withL ≈ 4.7ξ
andL ≈ 7.8ξ for β = 0.226 andβ = 0.224 respectively.
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Table 9. Comparison of the results for the exponential correlation length with those obtained
for theZ2 gauge model (̃β denotes the dual ofβ).

β̃ β ξgauge ξeff

0.724 84 0.239 10 1.296(3) 1.2851(28)
0.740 57 0.231 42 1.864(5) 1.8637(45)
0.748 83 0.227 50 2.592(5) 2.578(7)
0.752 02 0.226 00 3.135(9) 3.103(7)
0.756 32 0.224 00 4.64(3) 4.606(13)

4.4. Exponential correlation length

As we mentioned above, in the low-temperature phase the evaluation of the exponential
correlation length is much more delicate than in the high-temperature phase. In particular,
we know from the fact that the ratioξ

ξ2nd
is significantly different from 1 and [39] that in

this region the spectrum is very rich and that nearby states exist that could contaminate
the measure ofξ . This is exactly the situation discussed in section 3.1 and accordingly we
may expect some systematic error inξeff. Since the presence of nearby masses is a rather
common situation in the broken symmetry phases of statistical mechanical models and since,
notwithstanding this, the estimatorξeff is commonly also used in this case, we have decided
to devote this section to a detailed analysis of this problem. We can explicitly see thatξeff

evaluated according to equation (37) is not a good estimator of the true correlation length by
comparing our estimates with those of [39] (see table 9). In [39] we computed the glueball
spectrum of theZ2 gauge theory in three dimensions. Ind = 3 the spin and gauge Ising
models are related by duality and the inverse of the 0+ glueball mass exactly coincides
with exponential correlation length of the spin Ising model. In [39] we used a variational
approach, using 27 different wilson loops as operators, to obtain a faster convergence ofξeff.
In this way each mass of the spectrum was driven in a different channel, and practically
no contamination from higher states was present. The results of [39] are comparable in
statistical accuracy with those presented here. It is easy to see looking at table 9 that the
values ofξeff obtained here are systematically smaller, on average by a factor of 0.995(2).
This shows, as expected, that the single exponential ansatz is problematic in this case and
that a multimass ansatz is needed. In order to have an independent test of this fact we tried
to fit our data atβ = 0.224 for the correlation function with the following three-mass ansatz

G(τ) ∼ c1 exp(−τ/ξ1)+ c2 exp(−τ/ξ2)+ c3 exp(−τ/ξ3). (41)

However, the main problem of such multimass fits is that they are in general rather unstable
under variation of the fit range. This was also the case with our fits. Therefore we fixed
the values ofξ2 = 2.50 andξ3 = 1.70 found in [39]. We found the following values:
c2/c1 ≈ 0.1 and c3/c1 ≈ 0.04, whenτ ’s in the range of 5–25 are included in the fit.
Note, however, that even in this case the results were still rather unstable, and for this
reason we cannot give reliable error bars for our estimates. Assuming thatG(τ) is well
described by the three mass-ansatz and using our estimates forc2/c1 and c3/c1 we obtain
ξeff(3ξ) = 0.993ξ which is indeed consistent with our result above.

It is also interesting to insert our estimate forc2/c1 and c3/c1 into equation (24). We
obtainξ/ξ2nd= 1.024.

The situation is much simpler in the high-temperature phase, whereξ2nd∼ ξ , no nearby
masses are present andξeff is a good estimator of the true correlation length.
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Table 10. The various ratios as functions of1β.

1β 0χ 0ξ u 0c
ξ
ξ2nd

0.017 45 6.044(5) 1.902(2) 15.00(6) 4.394(9) 1.042(3)
0.009 77 5.546(5) 1.920(3) 14.75(5) 3.850(10) 1.033(3)
0.005 85 5.283(3) 1.932(3) 14.66(6) 3.577(10) 1.026(4)
0.004 35 5.182(5)(1) 1.939(3) 14.64(5) 3.466(8) 1.0227(34)
0.002 35 5.027(6)(2) 1.942(3) 14.47(6) 3.308(9) 1.0215(42)
0.001 46 4.947(6)(3) 1.948(3)(1) 14.51(7) 3.233(9)(1) 1.0188(45)

5. Universal amplitude ratios

The standard approach to evaluate the amplitude ratios is to fit the data obtained for both
phases separately with the expected scaling law, and then take the ratio of the amplitudes
obtained from the fits.

However, the bias introduced by the uncertainty in the critical exponent can be avoided
by directly studying the ratio as a function of the reduced temperature. This is the reason
why we carefully chose the couplings so as to have the same differences1β ≡ |β − βc| in
the two phases. To explain our approach better let us study as an example the amplitude ratio
0χ . From the data reported in tables 3 and 5 we can compute the ratios of susceptibilities
in the low- and high-temperature phase as a function of1β.

0χ(1β) = χ(βc −1β)
χ(βc +1β). (42)

As 1β goes to 0 we expect0χ(1β) to converge to the amplitude ratioC+/C−. However,
the approach to this critical value is rather non-trivial. A naive implementation of the scaling
hypothesis would suggest that the data thus obtained should be constant within the error,
but it is easy to see, by looking at the data in table 10 that this is not the case. There are in
fact two sources of corrections. The fact that observables in both phases are involved in the
ratio tells us that we must expect a correction proportional to1β. Moreover we certainly
expect a ‘correction to scaling’ contribution proportional to1βθ . In the example of0χ the
need of such corrections is clearly evident. Looking at the data in table 10 we see that the
violations of scaling are much larger than our statistical errors. Even for the smallest values
of 1β we see no stabilization of0χ within error bars. Following the above discussion we
fit the data of table 10 with the law

0χ(1β) = C+/C− + a01β
θ + a11β (43)

where we assumed that there is no other correction to scaling exponentθ ′ betweenθ and
1. The results of these fits for the various ratios in which we are interested are reported in
table 11. The fact that we always find rather lowχ2

red strongly supports the correctness of
the above assumption.

A few comments are in order at this point.
(1) When dealing with combinations of observables all in the same phase we do not

need a correction to scaling term proportional to1β. This is the case of the coupling
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Table 11. Results of the fits according to equations (43) and (44) (see also comment (5)).

0χ 0ξ u 0c
ξ
ξ2nd

χ2
red 0.52 0.43 0.52 0.01 0.20

CL 59%(2) 65% 67% 98% 90%
a0 3.5(8) −0.04(50) 4.8(1.2) 3.0(1.5) 0.24(8)
a1 46.9(5.4) −2.9(3.4) 54(10)
Final result 4.75(3) 1.95(2) 14.3(1) 3.05(5) 1.009(5)

constantu and of the ratioξ/ξ2nd. In this case we fit the law†:
u(1β) = u∗ + a01β

θ . (44)

(2) The error due to the specific choice ofβc is always very small. We report its value
in the data of table 10 only when it is not negligible. In these cases the number in the
first bracket gives the statistical errors of our data, while the second takes into account the
uncertainty of the inverse critical temperature.

(3) In the last row of table 11 we report our final results for the various ratios. The
corresponding errors also take into account the uncertainty in the indexθ and are thus
slightly larger than those extracted by the fits.

(4) In the results of table 11 we always fitted only the last five values of1β, and
systematically discarded the data at1β = 0.017 45‡.

(5) Particular care must be devoted to the study of the ratioξ

ξ2nd
. It is possible to prove

that if higher masses exist in the theory (and this is the case in both phases of the Ising
model) then ξ

ξ2nd
must certainly be larger than 1. This is a consequence of equation (24)

and of the fact that the coefficientsci which appear in it must be positive (see equations (9)
and (10) of [39] for a proof of this last statement).

In the high-temperature phaseξ
ξ2nd

is almost compatible with 1 (within the errors), and
we can only use our data to set an upper bound for its value which, looking at the data with
the largest correlation length, can be safely chosen to bef+

f+,2nd
< 1.0006.

In contrast in theβ > βc phase, the quantityξ
ξ2nd
− 1 is much larger than the error

bars, and can be measured rather precisely. The data in the last column of tables 10 and
11 refer to this case and useξeff (defined in section 4.4) as an estimator ofξ . Hence,
we must add to the result of the fit (which is reported in the last row of table 11:
f−
f−,2nd

= 1.009(5)) the contribution due to the systematic underestimation1ξ ∼ 0.007
discussed in section 4.4 above. Taking into account this correction as well we quote as
our final result f−

f−,2nd
= 1.017(7). It is interesting to note that this result agrees within the

errors with the value f−
f−,2nd
∼ 1.024 obtained in section 4.4 by inserting into equation (24)

† Note, however, that hidden in the1β correction there should also be a term proportional to1β2θ which, due
to the fact thatθ ∼ 1

2 is essentially indistinguishable from1β. The correction1β2θ should also be present in
the case in which all the observables belong to the same phase, thus suggesting also using in this case the fit
equation (43). It turns out, however, that such a1β2θ correction, if present, has a negligible amplitude and for
this reason we confined ourselves to the fit (44).
‡ This is not due to the fact that by adding this data we had a poorer fit, in contrast we checked that for all
the ratios the fit keepingall the six data was always equally good. The reason for our choice is that we tried to
confine ourselves to the narrowest possible region near the critical point compatible with a reasonable precision
for the results. This allows us to trust in our assumption of neglecting other possible, unknown, corrections to
scaling which are certainly present but hopefully negligible in this range. It is a remarkable consequence of the
high precision of our Monte Carlo estimates that we can still extract meaningful results by using only five values
of 1β.
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our estimates forc2/c1 andc3/c1 and the values of the two nearby (inverse) massesξ2 and
ξ3 extracted from [39]. Finally we can directly estimate the ratio by using the unbiased
data forξ obtained in [39] and reported in table 9. The only problem is that these data are
slightly less precise and that the lowest value ofβ is missing. The resulting estimate for
the ratio: f−

f−,2nd
= 1.029(11) is thus affected by a larger error. Also, in this case we find a

good agreement within the errors with our final resultf−
f−,2nd
= 1.017(7)

5.1. Comparison with other existing estimates

In table 14 we compare our results with those obtained with other methods. Let us briefly
comment on this comparison.

(1) There are three possible approaches to the evaluation of the amplitude ratios. Monte
Carlo simulations (denoted ‘MC’ in table 14), low- and high-temperature series expansions
(denoted ‘HT, LT’, in table 14) and field theoretic methods. In this last case two different
approaches are possible. The first one consists of looking at theε expansion of theφ4

theory around four dimensions (‘ε−exp.’ in table 14). The second one consists of looking
directly at theφ4 theory in three dimensions (‘d=3’ in table 14). For a detailed discussion
of these approaches see, for instance [40]. Let us also mention for completeness that an
independent, interesting method of evaluating the ratio of specific heat amplitudes (which
we do not study in this paper) by looking at the distribution of the zeros of the partition
function was proposed and applied to the Ising model in [41, 42].

(2) The results of [2, 4] for0χ and0ξ were obtained with a careful resummation of two
loop ε-expansions. In contrast, theε-expansion for the exponentialξ (which is needed to
obtain the value off−/f−,2nd which is reported in the last column of table 14) is known only
at one loop, hence the valuef−/f−,2nd∼ 1.005 of [2] must only be considered as indicative.
Later theε-expansion for0χ was extended up toε3 and the value of [4] corresponds to the
Pad́e resummation of such series. Recently [5], this result was further improved by using
the parametric representation of the equation of state of the theory.

(3) Thed = 3 approach originates from a suggestion by Parisi [17]. While the results
of [5, 6] use only series expansions obtained in the symmetric phase of the theory, in [7, 8]
a three loop calculation, directly performed in the low-temperature phase, was used. In this
last case a crucial role is played by the low-temperature renormalized coupling constantu

evaluated at the critical point. We shall further comment on this point later.
(4) The estimates for the amplitude ratios obtained by using the low- and high-

temperature series expansion reported in table 14 are mainly taken from [9]. They were
obtained by using IDAs on the series reported in table 12, where we used the standard
notations:v ≡ th(β) andu ≡ e−4β (not to be confused with the low-temperature coupling
constant in thed = 3 φ4 theory!) for high- and low-temperature series respectively.

Table 12. Some information on the series used in [9].

Ref. Year Observable Length

[43] 1979 HT/χ v18

[44] 1969 HT/ξ2nd v12

[46] 1979 LT/χ u20

[45] 1975 LT/ξ2nd u15

[45] 1975 LT/ξ u7

[46] 1979 LT/m u21
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Table 13. Some information on the low-temperature series used in this paper.

Ref. Year Observable Length

[33] 1993 LT/χ u32

[31] 1995 LT/ξ2nd u23

[32] 1995 LT/ξ u15

[33] 1993 LT/m u32

Table 14. Results for the amplitude ratios reported in literature.

Ref. Year Method C+
C−

f+,2nd
f−,2nd

u∗ C+
f 3
+,2ndB

2
f−

f−,2nd

[2, 3] 1974 ε-exp ∼4.8 ∼1.91 ∼1.005
[4] 1985 ε-exp ∼4.9
[5] 1996 ε-exp 4.70(10)
[6] 1987 d = 3 4.77(30) 3.02(8)
[47] 1993 d = 3 ∼1.0065
[5] 1996 d = 3 4.82(10)
[8] 1996 d = 3 4.72(17) 2.013(28) 14.4(2)
[45] 1975 HT,LT ∼1.0069
[9] 1989 HT,LT 4.95(15) 1.96(1) 14.8(1.0) 3.09(8)
[48] 1993 HT,LT 14.73(14)
[11] 1994 MC 5.18(33) 2.06(1) 17.1(1.9) 3.36(23)
this work 1996 MC 4.75(3) 1.95(2) 14.3(1) 3.05(5) 1.017(7)

Recently these data were reanalysed [10] (using the same series) leading to essentially
the same results. Note, however, that recently new, longer series have been constructed in
the low-temperature phase. These are the series that we have used in the previous sections
to test our Monte Carlo results. It would be very interesting to see whether these new
series can lead to improved estimates of the amplitude ratios. In particular it would now be
possible to analyse also the ratioξ/ξ2nd which was previously almost unaccessible, since
the two series forξ andξ2nd start to be different only at the orderu6. In fact the estimate
for this ratio reported in table 14 (taken from [45]) was obtained by using only one (the
last) element of the LT series forξ and is thus rather unreliable.

(5) Some of the data reported in table 14 (those which are underlined) were obtained by
combining separate amplitudes reported by the authors, thus their errors are most probably
overestimated.

(6) An estimate for the ratio f+
f+,2nd

has recently been reported [49], obtained with a
strong coupling expansion to 15th order of the correlation functionG(τ). The result is
f+
f+,2nd
= 1.000 23(5) which agrees with our bounds 1.0< f+

f+,2nd
< 1.0006.

(7) Finally, it is also interesting to compare our results with those obtained in the
framework of the mean-field approximation, which givesC+

C−
= 2 and f+

f−
= √2 (see [1] for

details).

5.2. Comparison with an effective potential model

It has recently been proposed to study the critical properties of the three-dimensional Ising
model by constructing the effective potential of the corresponding quantum field theory.
This effective potential is constructed by simulating the model for various values of the
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Table 15. Comparison with Tsypin’s results.

Observable This work Table 1 of [51] Table 2 of [51]

m 0.449 984(16) 0.449 75(17) 0.449 75(17)
χ 27.596(11) 27.397(75) 27.586(198)
ξ2nd 3.034 0(32) 2.946(6) 2.956(10)
u 14.64(5) 15.90(9) 15.84(28)
L 80 30 30

Table 16. Experimental estimates for some amplitude ratios.

Experimental set-up C+
C−

f+,2nd
f−,2nd

C+
f 3
+,2ndB

2

(bm) 4.4(4) 1.93(7) 3.01(50)
(lvt) 4.9(2) 2.83(31)
(af) 5.1(6) 1.92(15)
(all of them) 4.86(46) 1.93(12) 2.93(41)
this work 4.75(3) 1.95(2) 3.05(5)

external magnetic field. This programme was carried out in [50] for the high-temperature
phase of the model and was recently extended to the broken symmetric phase in [51]. The
main result is that in the effective potential, besides the expectedφ4 term, aφ6 term is also
present. It is interesting to test this model with our high-precision results. Fortunately one
of the values ofβ studied in [51]: β = 0.2260 exactly coincide with one of our values
thus allowing a detailed comparison. This comparison is reported in table 15, where in the
third column we have reported the values of the various observables directly measured at
β = 0.2260 (table 1 of [51]) while in the last column we have reported the same observables
obtained from what was considered in [51] as the most successful fitting procedure (table 2
of [51]). Note thatχ is the inverse ofV ′′ and thatu = 3G in the notations of [51].
Our results are in general one order of magnitude more precise than those of [51]. It is
interesting to see that bothm and χ are in rather good agreement with our data. The
only strong disagreement is in the value ofξ2nd and, as a consequence of this, inu. This
disagreement is most likely only due to the too small lattices studied in [51] (the lattice size
is reported in the last line of table 15) and does not imply that the approach proposed in
[51] is wrong.

5.3. Comparison with experimental data

The experimental data reported in table 16 refer to the three most important experimental
realizations of the Ising universality class, namely binary mixtures (bm), liquid–vapour
transitions (lvt) and uniaxial antiferromagnetic systems (af). It is important to note that
these realizations are not on the same ground. Af systems are particularly apt to measure
theC+/C− andf+,2nd/f−,2nd ratios, while for the lvt the0c ≡ Rc/R3

ξ combination is more
easily accessible. Finally, in the case of bm all the three ratios can be rather easily evaluated.
Even if obtained with very different experimental set-ups all these estimates qualitatively
agree among themselves and this is certainly one of the most remarkable experimental
evidences of universality. When looking in more detail at the various results one can see a
residual small spread among them (even if in general the various estimates are compatible
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Table 17. Experimental estimates for thef+,2nd
f−,2nd

ratio.

Ref. Year Experimental set-up f+,2nd
f−,2nd

[52] 1971 (af), MnF2 1.7(3)
[53] 1972 (af), FeF2 2.06(20)
[54] 1980 (af), CoF2 1.93(10)
[55] 1983 (bm), N–H 1.9(2)
[56] 1986 (bm), I–W 2.0(4)
this work 1996 MC 1.95(2)

within the quoted experimental uncertainties). This spread is mainly due to the presence
of correction to scaling terms whose amplitudes vary as the experimental realizations are
changed and that are difficult to control. Thus some care is needed to compare these
experimental data with theoretical estimates. The common attitude is to assume that the
above systematic errors are randomly distributed and to take the weighted mean of the
various experimental results.

Following this, in table 16 we have reported the weighted means (together with, in
parenthesis, the standard deviations), of the experimental results reported in [1]. In the first
three rows we have studied separately the three different realizations of the universality
class while in the fourth row all the experimental data at disposal are analysed together. In
the last row we have reported our results.

In the case of thef+,2nd/f−,2nd ratio (for which, as we have seen, some of the
present theoretical or Monte Carlo estimates disagree) we have listed, for a more detailed
comparison, all the available experimental data in table 17. In this table we denote with ‘N–
H’ the nitrobenzene–n-hexane binary mixture, and with ‘I–W’ the one obtained by mixing
isobutyric acid and water. A much more detailed account of the various experimental
estimates can be found in [1].

6. Conclusions

We have estimated various universal amplitude ratios in the case of the three-dimensional
Ising model. Our final results are:

C+
C−
= 4.75(3)

f+,2nd

f−,2nd
= 1.95(2)

f−
f−,2nd

= 1.017(7) (45)

u∗ ≡ 3C−
f 3
−,2ndB

2
= 14.3(1)

C+
f 3
+,2ndB

2
= 3.05(5). (46)

Our results are, in general, in good agreement with other estimates of the same quantities
obtained with field theoretical methods or with high/low-temperature series. The main
discrepancy that we have found is with the Monte Carlo results of [11] and with some of
the results of [51]. It must also be noted that our resultf+,2nd

f−,2nd
= 1.95(2) only marginally

agrees with that of [8]: 2.013(28). However, as we mentioned above, this result depends
on the value of the coupling constantu∗ which is an external input in the calculations of
[8]. By plugging our value ofu∗ into the perturbative expansion of [8] we find a lowering
of the ratio with respect to [8]. This lower result:f+,2nd

f−,2nd
= 1.99(2) agrees not only with the

strong/weak coupling result [9], but also with our estimate. Finally, it is important to note
that our results are also in reasonable agreement with the experimental ones.
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